Alberta BLOOM Clinical Research Study

Alberta BLOOM is a major research initiative at the University of Calgary aiming to discover how the maternal and infant microbiotas – all of the microbes living in and on the human body – impact infant and child health. By engaging mothers in biomedical research, Alberta BLOOM makes them active partners in the development of evidence-based policies and interventions that empower women to make healthy choices for their bodies and their babies.

Check out our Website

Ecology of the Early Life Microbiome

The Arrieta lab is home to numerous research projects directed at understanding the fundamental ecology of the early life microbiome and the early life microbiome’s effects on many areas of health outcomes, inflammation and chronic disease.

Numerous species coexist in the gut microbiome and so studying only one part of this community provides an incomplete portrayal of the complex ecological changes happening inside our guts. Interestingly, we have recently shown that gut bacteria and fungi are engaged in varied symbiotic relationships, although much remains to be elucidated on these interactions. We are also studying the ecological consequences of introducing probiotic species to the infant microbiome very early in life. The Arrieta is continuously looking at understanding and characterizing these ecological interactions and relationships occurring within the gut and their outcomes on the host immune development.

The Microbiome in Premature Infants

The Arrieta lab co-leads a prospective, longitudinal birth cohort Study of premature infants born in Calgary. This study, named the Alberta BLOOM Study, is following the changes in microbiome development in these infants during the first three years of life. Our goal is to further understand how the known alterations in microbiome development may impact health outcomes, as well as strategies to improve the microbiome in these children.

The Early Life Microbiome in Asthma Development

Asthma is one of the most common immune-mediated diseases affecting children and adults worldwide. Asthma is a complex condition that develops by a combination of both environmental and genetic factors. Amongst the many environmental factors that influence asthma incidence, early-life alterations to the gut microbiome are strongly associated with asthma susceptibility in children. Data from diverse population-based studies repeatedly show that factors such as birth via Caesarian (C-section), exclusive formula feeding, urban (vs. farm) living, prenatal and neonatal use of antibiotics, among others also known to directly influence the composition and function of the gut microbiome, increase the risk of children for being diagnosed with asthma by school age. The Arrieta lab aims to characterize how various environmental factors impact the microbiome and the specific microbial signatures that may predispose infants to asthma.

The Mycobiome in Early Life

The continuous advances in the microbiome field have allowed researches go beyond investigating just the bacterial players. The Arrieta lab has a strong focus on studying the mycobiome, and fungi are emerging as important members of the microbiome, though as this a fairly new avenue of study, it is not well characterized. We are interested in determining the composition and how environmental factors alter the gut mycobiome. With a combination of clinical and translational studies, we are determining how the mycobiome changes following antibiotic treatment in infants, and how these alterations influence susceptibility to immune-mediated diseases in mice.

The Microbiome and Colonization Resistance

The Arrieta lab’s interest in the microbiome also extends past early life to the microbiome’s role in metabolism, immune function and colonization resistance.

It is known that certain microbiome metabolites, such as SCFAs, can limit some pathogen’s ability to infect their hosts, and the Arrieta lab, along with some fantastic collaborators, is investigating the role of some novel microbiome-produced small aromatic molecules (MPSAMs). The effect of these molecules on colonization resistance against and virulence factors of Salmonella and EPEC infection, as well as their role in regulating host immune and metabolic functions is currently being investigated.

The Microbiome and Obesity

It has been previously established that the microbiome plays a crucial role in host metabolism and metabolic development. Additionally, the immune system, which has also been found to be regulated by the microbiome, has been implicated in the metabolic inflammation that accompanies obesity. While the role of bacterial commensals has been extensively investigated, the fungal population (mycobiome) remains understudied in this context. For this reason, the Arrieta lab aims to take a multi-kingdom approach to explore how commensal microbes modulate host metabolism as well as the immunological consequences of this relationship. We also plan to determine how the microbiome can be harnessed for therapeutic benefit in a metabolic context.

The Microbiome and Stress

Check back soon to learn more about this exciting area of our research!